m1ts0s
News poster
- Μηνύματα
- 2.337
- Reaction score
- 3.650
Audio Pixels is an exciting enterprise that has developed a revolutionary technological platform for reproducing sound, thus enabling the production of an entirely new generation of speakers that will exceed the performance specifications and design demands of the world's top consumer electronics manufacturers.
Our patented technologies (principle patents in national phase in 13 countries), employ entirely new techniques to generate sound waves using low cost micro-electromechanical structures (MEMS). This innovation enables the production of speaker products that deliver performance that is many orders of magnitude better than conventional speaker technologies, all in an affordable package that is roughly only one millimeter thick!
Audio Pixels is the first and only known company that has successfully implemented the promise of Digital Sound Reconstruction (DSR) in a commercially feasible manner enabling a market evolution in a similar fashion to what has occurred in the transition from large, heavy, bulky analog CRT monitors, to the digital flat panel displays of today.
Design Highlights:
a. Excellent impedance matching. Maximizes energy conversion (from electrical to acoustic). The theoretical efficiency limit of Audio Pixel speaker is 60%; which is roughly 60 times better than conventional speakers. The improved impedance matching also serves to significantly increase the SPL (Sound Pressure Level), or loudness, achievable from an Audio Pixels speaker when compared to conventional speakers of similar dimensions.
b. True digital reproduction of sound using a large array of identical micro-speakers. Unlike conventional speakers in which the membrane is required to compliantly travel varying distances and speeds all the micro-speakers are required to perform the exact same simple function, i.e. work or don’t work at any given time. When working, they travel at the same speed over the same displacement.
c. DSR offers performances that are orders of magnitude better than conventional speakers of similar sizes. The frequency range can be much broader and the frequency response perfectly flat. The distortion level is a fraction of that of conventional speakers, in most cases, well below the human detection threshold.
d. Low Power Requirement – the driving mechanism uses a tiny fraction of the power required by conventional speakers resembling the power requirements of headphones.
e. Design flexibility – not only are the speaker “drivers” very thin, they require no cabinet or enclosure and therefore can be mounted on most any surface (including SMD configurations), providing device designers with unprecedented flexibility.
Principle of Operation
The sound pressure generated by an Audio Pixels speaker is proportional to the number of operating micro-speakers (“Audio Pixels”) and the throughput of each one. Varying the number of pulses over time produces different frequencies. Unlike analog speakers, individual micro-speakers operate in a non-linear region to maximize dynamic range while still being able to produce low frequency sounds. The net linearity of the array comes from linearity of the acoustic wave equation and uniformity between individual speakers. The overall non-linear components in the generated sound wave have a direct relation to the number of micro-speakers in the device.
Additional Advantages over Conventional Speakers
Damping: Conventional speakers oscillate long after the input signal is stopped. The heavy membrane transfers only a fraction of its energy into the air and it continues to oscillate for a considerable time before the oscillations decays. Conventional speaker systems utilize artificial damping to overcome this problem. The most common damping mechanism leverages the amplifier to absorb large opposite currents induced in the voice coil of the speaker due to its movement. The excess currents require sophisticated amplifier designs. In contrast, an Audio Pixels speaker "stops on a dime". The signal is initiated and terminated within one clock cycle.
Vibrations: Due to the high impedance matching of Audio Pixels speakers, a much smaller movement is required to generate the same loudness. According to Newton's law, each action generates an opposite reaction. In a speaker, movement of the membrane generates opposite movement of the frame. The smaller movement of an Audio Pixels speaker generates significantly lower vibration levels. Vibrations are often problematic in sensitive electronics. In displays for example, excess vibrations produced by speakers can cause deformation of the image and potentially damage the display elements. Vibrations are also problematic in full duplex communication devices (such as mobile phones or blue-tooth headsets), where the microphone can pick up the speaker vibrations generating echo and feedback noise. The reduced vibrations of an Audio Pixels speaker allow much more moderate levels of echo reduction and suppression.
Directivity Control: Audio Pixels invented (and patented) a scheme of controlling the acoustic directivity pattern of its speakers. The scheme is similar in nature to other phase-array devices, most well known are radars and RF antennas. The same speaker can be used as an omni-directional sound source (much like conventional speakers), or a unidirectional source (a narrow beam of sound is projected in one directions, and almost no sound is projected in any other direction), or a multi-directional source projecting several sound beams (each may carry different audio), in several different directions. The applications leveraging control of sound directionality are limitless.
http://www.audiopixels.com.au/index.cfm/technology/
Our patented technologies (principle patents in national phase in 13 countries), employ entirely new techniques to generate sound waves using low cost micro-electromechanical structures (MEMS). This innovation enables the production of speaker products that deliver performance that is many orders of magnitude better than conventional speaker technologies, all in an affordable package that is roughly only one millimeter thick!
Audio Pixels is the first and only known company that has successfully implemented the promise of Digital Sound Reconstruction (DSR) in a commercially feasible manner enabling a market evolution in a similar fashion to what has occurred in the transition from large, heavy, bulky analog CRT monitors, to the digital flat panel displays of today.


Design Highlights:
a. Excellent impedance matching. Maximizes energy conversion (from electrical to acoustic). The theoretical efficiency limit of Audio Pixel speaker is 60%; which is roughly 60 times better than conventional speakers. The improved impedance matching also serves to significantly increase the SPL (Sound Pressure Level), or loudness, achievable from an Audio Pixels speaker when compared to conventional speakers of similar dimensions.
b. True digital reproduction of sound using a large array of identical micro-speakers. Unlike conventional speakers in which the membrane is required to compliantly travel varying distances and speeds all the micro-speakers are required to perform the exact same simple function, i.e. work or don’t work at any given time. When working, they travel at the same speed over the same displacement.
c. DSR offers performances that are orders of magnitude better than conventional speakers of similar sizes. The frequency range can be much broader and the frequency response perfectly flat. The distortion level is a fraction of that of conventional speakers, in most cases, well below the human detection threshold.
d. Low Power Requirement – the driving mechanism uses a tiny fraction of the power required by conventional speakers resembling the power requirements of headphones.
e. Design flexibility – not only are the speaker “drivers” very thin, they require no cabinet or enclosure and therefore can be mounted on most any surface (including SMD configurations), providing device designers with unprecedented flexibility.
Principle of Operation
The sound pressure generated by an Audio Pixels speaker is proportional to the number of operating micro-speakers (“Audio Pixels”) and the throughput of each one. Varying the number of pulses over time produces different frequencies. Unlike analog speakers, individual micro-speakers operate in a non-linear region to maximize dynamic range while still being able to produce low frequency sounds. The net linearity of the array comes from linearity of the acoustic wave equation and uniformity between individual speakers. The overall non-linear components in the generated sound wave have a direct relation to the number of micro-speakers in the device.
Additional Advantages over Conventional Speakers
Damping: Conventional speakers oscillate long after the input signal is stopped. The heavy membrane transfers only a fraction of its energy into the air and it continues to oscillate for a considerable time before the oscillations decays. Conventional speaker systems utilize artificial damping to overcome this problem. The most common damping mechanism leverages the amplifier to absorb large opposite currents induced in the voice coil of the speaker due to its movement. The excess currents require sophisticated amplifier designs. In contrast, an Audio Pixels speaker "stops on a dime". The signal is initiated and terminated within one clock cycle.
Vibrations: Due to the high impedance matching of Audio Pixels speakers, a much smaller movement is required to generate the same loudness. According to Newton's law, each action generates an opposite reaction. In a speaker, movement of the membrane generates opposite movement of the frame. The smaller movement of an Audio Pixels speaker generates significantly lower vibration levels. Vibrations are often problematic in sensitive electronics. In displays for example, excess vibrations produced by speakers can cause deformation of the image and potentially damage the display elements. Vibrations are also problematic in full duplex communication devices (such as mobile phones or blue-tooth headsets), where the microphone can pick up the speaker vibrations generating echo and feedback noise. The reduced vibrations of an Audio Pixels speaker allow much more moderate levels of echo reduction and suppression.
Directivity Control: Audio Pixels invented (and patented) a scheme of controlling the acoustic directivity pattern of its speakers. The scheme is similar in nature to other phase-array devices, most well known are radars and RF antennas. The same speaker can be used as an omni-directional sound source (much like conventional speakers), or a unidirectional source (a narrow beam of sound is projected in one directions, and almost no sound is projected in any other direction), or a multi-directional source projecting several sound beams (each may carry different audio), in several different directions. The applications leveraging control of sound directionality are limitless.
http://www.audiopixels.com.au/index.cfm/technology/