... μετά τα 16 bits,... το Χάος

Μηνύματα
709
Reaction score
10
Απάντηση: ... μετά τα 16 bits,... το Χάος

Νομιζω οτι απλα κανει ολισθηση αριστερα/δεξια οταν αλλαζουμε την ενταση.
Στην αύξηση της έντασης η απλή ολίσθηση (προσθήκη μηδενικών στο τέλος της λέξης) κάνει δουλειά,
αλλά έτσι ότι ξεπερνά τα 0dB κόβεται - εμφανίζεται clipping.
Για την μείωση της έντασης η απλή ολίσθηση (προσθήκη μηδενικών στην αρχή της λέξης) έχει πρόβλημα
από ένα σημείο και μετά γιατί είναι αντίστοιχο με την μείωση των bits (πετάς τα τελευταία bits ουσιαστικά).
Γι αυτό εφαρμόζεται κάποια τεχνική noise shaping ώστε να μην υπάρχει πτώση του SNR.
Συνήθως στα ψηφιακά έχεις μόνο αρνητικό gain και το οποίο δουλεύει πραγματικά καλά όταν έχει υλοποιηθεί σωστά.
 

GF

Μηνύματα
941
Reaction score
27
Απάντηση: ... μετά τα 16 bits,... το Χάος

Στην αύξηση της έντασης η απλή ολίσθηση (προσθήκη μηδενικών στο τέλος της λέξης) κάνει δουλειά,
αλλά έτσι ότι ξεπερνά τα 0dB κόβεται - εμφανίζεται clipping.
Για την μείωση της έντασης η απλή ολίσθηση (προσθήκη μηδενικών στην αρχή της λέξης) έχει πρόβλημα
από ένα σημείο και μετά γιατί είναι αντίστοιχο με την μείωση των bits (πετάς τα τελευταία bits ουσιαστικά).
Γι αυτό εφαρμόζεται κάποια τεχνική noise shaping ώστε να μην υπάρχει πτώση του SNR.
Συνήθως στα ψηφιακά έχεις μόνο αρνητικό gain και το οποίο δουλεύει πραγματικά καλά όταν έχει υλοποιηθεί σωστά.
Συμφωνω απολυτα.
:144:
 

GF

Μηνύματα
941
Reaction score
27
Απάντηση: ... μετά τα 16 bits,... το Χάος

Καθε bit ομως ειναι 6dB εντασης, σωστα?
Πως μπορουμε λοιπον να αυξομειωνουμε την ενταση σε βηματα του μισου dB π.χ.?
Μαλλον οχι με shift left/right.
 

costas EAR

Δόκτωρ ΔιαXύσιος
Editor
Μηνύματα
58.228
Reaction score
143.845
Απάντηση: ... μετά τα 16 bits,... το Χάος

έχω πάντως άπειρα παραδείγματα μουσικών που δεν αγγίζουν με τίποτα όχι μόνο τη μέγιστη στάθμη εγγραφής (0db), αλλά ούτε καν τα -3db.

Πιστεύω, σε αυτά τα περιστατικά, ένα ψηφιακό κέρδος (μέχρι να φτάσει πχ το -0,1db) έχει θετικό θεωρητικά αποτέλεσμα, ιδίως για το DAC. Και με την ακρόαση φαίνεται να "ζωντανεύει" το αποτέλεσμα, από υποτονικό γίνεται κάπως πιο τσαμπουκαλεμένο.

Φυσικά το cliping απαγορεύεται δια ροπάλου.

Τέτοια λύση με κάποιο "αυτοματισμό" στην υλοποίησή της, ώστε να φέρνει όλα τα μουσικά tracks στην επιθυμητή στάθμη πχ των -0,1db) μπορεί να εφαρμοστεί με expanders και limiters, με προσεκτικό υπολογισμό των χρόνων.

Τι λέτε για αυτή την προσέγγιση?
 

Μηνύματα
709
Reaction score
10
Απάντηση: Re: Απάντηση: Re: Απάντηση: Re: Απάντηση: Re: Απάντηση: ... μετά τα 16 bits

Λάθος...
....
Αυτά.το παρακάτω διάγραμμα είναι σαφές για τις στάθμες.όσο μεγαλύτερο bitrate τόσο μοκρότερα steps.
Εντάξει. Είμαι λάθος. Και τα βιβλία και τα μαθηματικά είναι λάθος.
Και το σχήμα αυτό που έχει εμφανιστεί σε κάμποσα posts είναι
ο οδηγός μας. Με δυο σχηματάκια όλα γίνονται αντιληπτά.
Τώρα ας μου εξηγήσει κάποιος πώς ενώ το oversampling αναφέρεται
στη συχνότητα δειγματοληψίας και στο ότι παίρνουμε παραπάνω
δείγματα στη μονάδα του χρόνου, το ζωγραφίζει ο κύριος Bruil
ως αύξηση των επιπέδων κβαντισμού - μείωση του βήματος κβαντισμού;
Κάποιο κβαντικό άλμα λογισμού πρέπει να έχει γίνει...

Όσοι θέλουν ας ακούσουν. Το SNR αντιστοιχίζεται στο ελάχιστο
βήμα και στην ελαχίστη των τιμών που μπορούμε να κβαντίσουμε.
Και άλλο παράδειγμα. Έχετε δύο χάρακες. Ο ένας (με χαμηλό SNR)
έχει υποδιαιρέσεις του ενός χιλιοστού. Ο άλλος (με ψηλό SNR) έχει
υποδιαιρέσεις του μισού χιλιοστού. Παίρνει λοιπόν κάποιος με
πρεσβυωπία τον καλό χάρακα. Αλλά το οπτικό του σύστημα πάσχει
και ρίχνει το SNR (το ολικό) γιατί δεν μπορεί να δεί τις γραμμούλες του μισού
χιλιοστού, μπορεί να δει μόνο τις μεγαλύτερες του ενός χιλιοστού.
Ε αυτός ο άνθρωπος δεν έχει μόνο πρόβλημα να μετρήσει αποστάσεις
μικρές του μισού χιλιοστού, αλλά και στις μεγάλες διαστάσεις
η ακρίβεια που μπορεί να πάρει είναι ενός χιλιοστού, όχι μισού
που του δίνει ο χάρακας. Οπότε για τον πρεσβύωπα θα έκανε
το ίδιο ο άλλος χάρακας με το χαμηλό "SNR".
Αυτός όμως που έχει καλό οπτικό σύστημα με ψηλό SNR βλέπει
τις γραμμούλες του μισού χιλιοστού και μετράει και 0.05 του
εκατοστού ως ελάχιστη τιμή και βλεπεί και τη λεπτομέρεια
στα μεγάλα μήκη πχ 5.25cm

Όσοι πραγματικά ενδιαφέρονται μπορούν να διαβάσουν κάποιο
βιβλίο σημάτων / επικοινωνιών / κωδικοποίησης για να εμβαθύνουν
και να δουν τα μαθηματικά πίσω από όλα αυτά.
 

Μηνύματα
709
Reaction score
10
Απάντηση: ... μετά τα 16 bits,... το Χάος

Καθε bit ομως ειναι 6dB εντασης, σωστα?
Πως μπορουμε λοιπον να αυξομειωνουμε την ενταση σε βηματα του μισου dB π.χ.?
Μαλλον οχι με shift left/right.
Εκεί μπαίνουν τα κόλπα του noise shaping και επίσης όλα
αυτά γίνονται σε παραπάνω bits από αυτά του σήματος 32,
48bits οπότε μπορείς να έχεις και 1/4dB βήμα.

Ο ΚΦ είχε βρει κάπου πόσα bits χρησιμοποιεί το volume του foobar,
πόσα Κώστα;
 

Μηνύματα
1.923
Reaction score
1.075
Απάντηση: ... μετά τα 16 bits,... το Χάος

Καθε bit ομως ειναι 6dB εντασης, σωστα?
Πως μπορουμε λοιπον να αυξομειωνουμε την ενταση σε βηματα του μισου dB π.χ.?
Μαλλον οχι με shift left/right.
η απλή πρόσθεση δεν κάνει; :126:
δηλαδή αν προσθέσω το 5 (101 ) στο 9 (1001);
ολισθηση κατα 3 αριστερα του 9 = 1001000
πρόσθεση του 5 στο 9 = 1110.

costasEAR said:
Τέτοια λύση με κάποιο "αυτοματισμό" στην υλοποίησή της, ώστε να φέρνει όλα τα μουσικά tracks στην επιθυμητή στάθμη πχ των -0,1db) μπορεί να εφαρμοστεί με expanders και limiters, με προσεκτικό υπολογισμό των χρόνων.
δεν έχουν τέτοια φίλτρα όλα τα players στα plugin τους;

sp502 said:
Γι αυτό εφαρμόζεται κάποια τεχνική noise shaping ώστε να μην υπάρχει πτώση του SNR.
το dither ενοείς;
 

GF

Μηνύματα
941
Reaction score
27
Απάντηση: ... μετά τα 16 bits,... το Χάος

Αρα το απλο shift ειναι coarse και το fine ειναι με δυαδικη αφαιρεση?
 



GF

Μηνύματα
941
Reaction score
27
Απάντηση: ... μετά τα 16 bits,... το Χάος

Οσο για το θεμα μας, gkar δεν εχω αξιοπιστη πηγη καθως το egreat μου ειναι για service:141::141::141:
 

Μηνύματα
4.853
Reaction score
4
Απάντηση: ... μετά τα 16 bits,... το Χάος

Ομολογώ ότι ως ένα σημείο μπόρεσα και παρακολούθησα μέχρι που μπήκαν τα μαθηματικά. :137:
(σε καμία περίπτωση δεν λέω να σταματήσετε βέβαια).

Μπορώ να μάθω ποιο είναι το συμπέρασμα του τέστ που κάνετε ή τον σκοπό του ;
 

GF

Μηνύματα
941
Reaction score
27
Απάντηση: ... μετά τα 16 bits,... το Χάος

Οτι τα ψηφιακα μας ειναι πραγματι 24/96.
 




Μηνύματα
4.853
Reaction score
4
Απάντηση: ... μετά τα 16 bits,... το Χάος

η γη γυρίζει:116:
Ελπίζω να δω τα αποτελέσματα που βγάλατε και ίσως καταλάβω....
πράγματα που το τεστ έδειξε και όχι η θεωρίες που συζητάτε.

Αν το έχετε κάνει ήδη πείτε που, plz.
 

costas EAR

Δόκτωρ ΔιαXύσιος
Editor
Μηνύματα
58.228
Reaction score
143.845
Απάντηση: ... μετά τα 16 bits,... το Χάος

η γη γυρίζει:116:
αιρετικέ! :138:
πρόσεξε, γιατί αυτός που το είπε ξέρεις τι τον κάναν?

άκου κει βλακείες....

μα είναι δυνατό να γυρίζει η γη?

και γω γιατί δε ζαλίζομαι? (αντίστοιχα παραδείγματα: αφού το άκουσα... ή πως μιλάς χωρίς να ακούσεις, ή ....)
 

Μηνύματα
4.059
Reaction score
777
Re: Απάντηση: ... μετά τα 16 bits,... το Χάος

Ελπίζω να δω τα αποτελέσματα που βγάλατε και ίσως καταλάβω....
πράγματα που το τεστ έδειξε και όχι η θεωρίες που συζητάτε.

Αν το έχετε κάνει ήδη πείτε που, plz.
Κατ εμέ τα αποτελέσματα που βγάλανε είναι τελείως λαθεμένα.Το αποτέλεσμα είναι οτι όποιος δέν το ακούει το κομμάτι δέν μπορέι να παίξει hd 24bit διότι ο θόρυβος του συστήματος είναι μεγαλύτερος απο το ελάχιστο σήμα.

Διαφωνώ καθέτως..εξήγησα γιατί...θεωρώ οτι με κατάλληλες ρυθμίσεις το κομμάτι ακούγεται και απο ένα stereo των 30ευρώ...
Αυτά...
 

costas EAR

Δόκτωρ ΔιαXύσιος
Editor
Μηνύματα
58.228
Reaction score
143.845
Απάντηση: ... μετά τα 16 bits,... το Χάος

Σωστός ο πίνακας με την θεώρηση ότι τα σήματα που κβαντίζουμε είναι ημίτονα.
Θεωρόντας όμως ότι τα σήματά μας δεν είναι απλά ημίτονα, αλλά
μία κανονική κατανομή, το SNR είναι λίγο μικρότερο (περίπου 9dB) και σύμφωνο
με τον τύπο που έχω δώσει λίγο παραπάνω:

SNR(dB)~6*N-7.2
όπου Ν ο αριθμός των bits.

(Βέβαια όταν μετρούν το SNR συνήθως χρησιμοποιούν ημίτονα.)
Έχεις δίκιο.

Λοιπόν, άντε να ξεδιαλύνουμε λίγο την κβάντιση και τον θόρυβο κβάντισης, που καθορίζει και το SNR, ώστε να έχουμε κοινή βάση σε αυτά που λέμε.

Τι είναι ο θόρυβος κβάντισης? Πως καθορίζει το SNR?

Είναι ένα σφάλμα κβαντισμού που εισέρχεται κατά τη μετατροπή του αναλογικού σε ψηφιακό (ADC), πχ κατά την αρχική ηχογράφηση αλλά και την επεξεργασία (προσέσινγκ). Είναι ουσιαστικά ένα σφάλμα στρογγυλοποίησης μιας τιμής, διότι δεν υπάρχει η διακριτική ικανότητα ενδιάμεσων τιμών.

Ο θόρυβος κβάντισης εξαρτάται από το σήμα αυτό καθ'αυτό και αποτελεί μη γραμμικό (non-linear) θόρυβο. Μπορεί να βγει "μοντέλο" υπολογισμού του θορύβου κβαντισμού με διάφορους τρόπους (εξ ου και οι μικρο-διαφορές του θεωρητικού SNR). Οι διαφορετικοί αυτοί τρόποι είναι ουσιαστικά 2, ο ένας για ημιτονοειδείς κυματομορφές και ο άλλος για μη ημιτονοειδείς, δηλαδή πχ τρίγωνες ή πριονωτές.

Η διαφορά των ημιτονοειδών με τις μη ημιτονοειδείς είναι ότι οι ημιτονοειδείς δεν είναι ομοιόμορφα κατανεμημένες στο φάσμα, ενώ οι μη ημιτονοειδείς είναι.

Φυσικά, και στις δυό περιπτώσεις μιλάμε για εκμετάλλευση όλου του δυναμικού εύρους (μέχρι στάθμη εγγραφής δηλαδή 0 dB), ώστε να είναι διαθέσιμα όλα τα "σκαλοπάτια" ώστε να μοιραστεί ομότιμα το σφάλμα κβαντισμού σε όλες τις "στρογγυλοποιήσεις" του σήματος.

Στην περίπτωση της ημιτονοειδούς κυματομορφής, όταν πρόκειται για μουσική πλήρους φάσματος με εγγραφή σε φούλ στάθμη, υποθέτουμε ότι είναι ομότιμη και ομοιόμορφη η κατανομή του σφάλματος κβαντισμού, και αυτό δεν απέχει από την πραγματικότητα (απέχει σε περίπτωση 1 τόνου μιας μόνο συχνότητας).

Έτσι, σε τρίγωνες ή πριονωτές κυματομορφές (κατά Fourier) και θεωρώντας ότι το σφάλμα κβάντισης είναι ανάμεσα στο +1/2 LSB και -1/2 LSB (LSB = Least significant bit και στην πράξη είναι η μονάδα, το μικρότερο τμήμα που μπορεί να αλλάξει, το όριο δηλαδή της κλίμακάς μας που έχουμε διαθέσιμη στη διακριτική ικανότητα του συστήματος, που ουσιαστικά ορίζει το σφάλμα στρογγυλοποίησης - quantization error), τότε σε ένα ADC το SNR υπολογίζεται ως εξής:

SNR=20 log(10) 2|Q (εκθέτης το Q)

=> SNR= 6.0206Q (db)

και για Q=16 (για το 16/44,1 του red book audio)

=> SNR=6.0206*16= 96.33 db

(κι εδώ έχουμε κάτι ανάλογο με σφάλμα κβάντισης, καθώς είναι στρογγυλοποίηση του 96,3296...)

Αντίθετα, σε ημιτονοειδείς κυματομορφές (κατά Fourier) και θεωρώντας και πάλι ότι το σφάλμα κβάντισης είναι ανάμεσα στο +1/2 LSB και -1/2 LSB (επίσης θεωρώντας ότι υπάρχει ομότιμη κατανομή σε όλο το συχνοτικό εύρος, πράγμα που δε πολυαπέχει από την πραγματικότητα σε φυσιολογική πλήρους φάσματος μουσική), τότε σε ένα ADC το SNR υπολογίζεται ως εξής:

SNR=1.761+6.0206Q (db) και με Q=16 έχουμε

=>SNR=1.761+96.3296 = 98.09 = 98,1 db (με λίγο παραπάνω σφάλμα κβάντισης)

Φυσικά όλα τα παραπάνω ισχύουν για πολύπλοκες πολλαπλές ημιτονοειδείς κυματομορφές, σε όλο το συχνοτικό εύρος και σε φουλ στάθμη. Σε χαμηλής στάθμης υλικό και σε περιορισμένες συχνότητες, οι παραπάνω τύποι δεν επαρκούν για την περιγραφή του SNR, καθώς ουσιαστικά καθορίζεται από τη στάθμη εγγραφής.

Εκτός όμως από τον υπολογισμό του SNR, μπορούμε να υπολογίσουμε και κάτι πιο "ειδικό", το SQNR (Signal-to-Quantization Noise Ratio) δηλαδή το λόγο SN ως προς το σφάλμα κβάντισης, όπου υπεισέρχεται ο ακριβής αριθμός των βημάτων κβάντισης και ο αριθμός των bits που χρειάζονται για κάθε sample του ψηφιακού σήματος.

Το SNQR, εκφραζόμενο επίσης σε db, εξαρτάται από την ισχύ του σήματος (εδώ μπαίνει λοιπόν η στάθμη εγγραφής) + 6ν + 4,8, όπου ν=ο αριθμός των bit = 16 στο 16/44,1.

Άρα, το SNQR ανεβαίνει κατά 6 db για κάθε bit παραπάνω, και για να είμαστε χωρίς σφάλμα κβάντισης (στρογγυλοποίησης) ανεβαίνει ακριβώς κατά 6,0205999132796239042747778944899 db. (20*log 2).

Το dither τι κάνει σε σχέση με το σφάλμα κβάντισης? Κάνει ομότιμη και ομοιόμορφη την κατανομή του σφάλματος κβάντισης σε όλο το συχνοτικό εύρος, εξαλείφοντας τον πολύ και αυξημένο θόρυβο σε συγκεκριμένη περιοχή, σε στενό συχνοτικό φάσμα. Τι κερδίζουμε? Κερδίζουμε το ότι δε μας τραβάει την προσοχή ο συγκεντρωμένος θόρυβος κβάντισης στα μεσαία πχ ή στα πρίμα, και δη σε πολύ μικρό συχνοτικό εύρος πχ στο κράξιμο μιας τενόρου, καθώς μοιράζεται αυτός ο θόρυβος σε όλο το φάσμα και πλέον ούτε τα χρυσά αυτιά δε καταφέρνουν να τον διακρίνουν.

Το dither εφαρμόζεται και στο analog to digital conversion (ADC), και στο sample rate conversion και στο bit depth transition. Γενικά λοιπόν δεν είναι λάθος να πεις ότι το dither εφαρμόζεται (μπορεί να εφαρμοστεί, δεν είναι υποχρεωτικό) σε κάθε DSP (digital signal processing).

Που στηρίζεται το dither? Στηρίζεται στη λογική ότι η κβάντιση και ξανα-κβάντιση (quantization και re-quantization) κατά πχ το DSP έχει ως αποτέλεσμα θόρυβο-σφάλμα, σαφή αλλοίωση του σήματος. Αν αυτό το σφάλμα είναι επαναλαμβανόμενο και μπορεί να συσχετιστεί με οτιδήποτε, μπορεί και να μετρηθεί και να ταυτοποιηθεί σε μια κυκλική διαδικασία σφαλμάτων, και μαθηματικά να απομονωθεί και να καταστραφεί σε ψηφιακό πάντα επίπεδο.

Η όλη ιδέα στηρίζεται στο ότι το αυτί μας (το χρυσό) λειτουργεί σα τους μετασχηματισμούς του Fourier, δηλαδή ενώ ακούει πεντακάθαρα μεμονωμένες συχνότητες (αμιγής θόρυβος) και είναι ευαίσθητο σε παραμόρφωση που χρωματίζει τον ήχο (δες λάμπες - μπλιαχ), είναι ταυτόχρονα ιδιαίτερα αναίσθητο σε τυχαίο θόρυβο διάσπαρτο σε όλο το ακουστό φάσμα (δες θόρυβος επιφάνειας δίσκου βινυλίου - μπλιαχ δις).

Μελέτησαν λοιπόν οι Lipshitz και Vanderkooy διαφορετικά πρότυπα θορύβων, με διαφορετικές πιθανότητες πυκνότητας τυχαίων σφαλμάτων (φοβερό, ε?) και απέδειξαν ότι υπάρχει σημαντική διαφορά όταν χρησιμοποιούνται αυτοί οι διαφορετικοί θόρυβοι ως σήμα dither, οπότε και κατέληξαν και πρότειναν ιδανικά επίπεδα dither σήματος για audio. Αυτό το πρότειναν σ'αυτήν την άσχετη τη παλιoφυλλάδα την AES, και δε ξέρω γιατί, έγινε αποδεκτό από όλο τον πλανήτη.

Άρα, που να βάλουμε εμείς (τα χρυσά αυτιά) dither? Να βάλουμε σε κάθε χαμηλής στάθμης ή υψηλής περιοδικότητας σήμα πριν οποιαδήποτε κβάντιση ή επανα-κβάντιση ώστε να μοιραστεί ομοιόμορφα το σφάλμα και ο θόρυβος κβάντισης να είναι μη ακουστός. Όσο μικρότερο το bit depth, τόσο περισσότερο dither χρειάζεται.

Βέβαια υπάρχουν πολλά είδη dither, και πρέπει να ξέρουμε ποιό να χρησιμοποιήσουμε. Πχ σε κάθε DSP καλό είναι να χρησιμοποιούμε TPDF dither (Triangular Probability Density Function). Άλλα είδη dither είναι το RPDF (Rectangular Probability Density Function), το Gaussian PDF, το Colored Dither και το Noise shaping.

Επ! Ναι, καλά είδατε, το Noise shaping είναι dither. Είναι μια διαδικασία feedback που ενσωματώνει dither με σκοπό να φτιάξει colored dither με την μεγαλύτερη ποσότητα του θορύβου του σε υψηλές συχνότητες, άρα πολύ λιγότερο ακουστό, ιδίως στους χαλιεντάδες που συνήθως είναι μεγάλης ηλικίας, άρα κουφοί εντελώς στα πρίμα (τζάμπα τα ρίμπον ρεεεεεεε).


Ωχ, κουράστηκα... Ελπίζω κάποια πράγματα για είναι πια πιο κατανοητά από όλους...
 


Staff online

ΣΤΑΤΙΣΤΙΚΑ

Threads
175.850
Μηνύματα
3.030.796
Members
38.508
Νεότερο μέλος
Ioanniss
Top